

Introduction to Q - Learning

220150026 Ryu Joon su

6/1

- Markov Decision Process
- Reinforcement Learning
- Definition of Q Learning and it's Algorithm
- Simple Example
- Proof of Convergence

6/8

- Playing Atari with Deep Reinforcement Learning
- Deep Q Learning

2

Markov Decision Process (MDP) is a mathematical framework for modeling decision making in situations where outcome are partly random and partly under the control of a decision maker.

Markov Decision Process (cont.)

Definition

- A Markov Decision Process is a 5-tuple (S, A, T, R, γ)
- S : finite set of states
- *A* : finite set of actions
- T : transition probability
- R : reward function (or C : cost function)
- γ : discount factor ($0 \le \gamma \le 1$)

Markov Decision Process (cont.)

- Deterministic MDP
 - If you select an action, then you can do this action with probability 1.
- Nondeterministic MDP
 - If you select an action, then you can do this action with any probability.

Markov Decision Process (cont.)

Goal

- To find a "policy" for the decision maker
- A function π that specifies the action $\pi(s)$ that the decision maker will choose when in state *s*.
- The goal is to choose a policy π that will maximize some cumulative function of the random rewards, typically the expected discount sum over a potentially infinite horizon.

Solution Concept

- If C belongs to an optimal path from A to B, then the sub-path A to C and C to B are also optimal.
- Therefore, all sub-path of an optimal path is optimal.

Solution

Bellman's Optimality Equation

$$V^{*}(s) = \sum_{s'} P(s, s', \pi(s)) \big(R(s, s', \pi(s)) + \gamma V^{*}(s') \big)$$

$$\pi^*(s) = \operatorname*{argmax}_{a} \left\{ \sum_{s'} P(s, s', a) \left(R(s, s', a) + \gamma V^*(s') \right) \right\}$$

Can be implemented by **linear programming** or **dynamic programming**.

Solution Algorithms

- Value Iteration (VI)
 - Also called **Backward Induction**.
 - π function is not used.
 - Computing $V_0 \rightarrow V_1 \rightarrow \cdots$ until *V* converges
- Policy Iteration (PI)
 - Policy Improvement Technique
 - Given π defines a new policy π' such that

$$\pi'(s) = \operatorname*{argmax}_{a \in A} \left\{ \sum_{s'} P(s, s', a) R(s, s', a) + \gamma \sum_{s'} P(s, s', a) V(s') \right\}$$

 Most of cases, computers do not know reward function until they really do actions.

Reinforcement Learning

- An area concerned with how an agent ought to take actions in an environment so as to maximize some notion of reward.
- The task of Reinforcement Learning (RL) is to use observed rewards to find an optimal policy for the environment.

Kind of Reinforcement Learning

Q – Learning

- Temporal Difference (TD) Learning
- State-Action-Reward-State-Action (SARSA) Learning
- Etc.

- Q Learning is a model-free reinforcement technique.
- Can be used to find an optimal action policy for any given MDPs.
- Converges to an optimal policy in both deterministic and nondeterministic MDPs.

Q – Learning (cont.)

Q function (nondeterministic)

• Define a functions $Q^* : S \times A \to \mathbb{R}$ such that

$$Q^{*}(s,a) = \sum_{s' \in S} P(s,s',a)R(s,s',a) + \gamma \sum_{s' \in S} P(s,s^{*},a)V^{*}(s')$$

■ Measure of how good to take an action *a* ∈ *A* at state *s* ∈ *S* if an optimal policy is followed from the possible next state of *s*.

Q – Learning Algorithm

- 1. Initialize $Q_0(s, a)$ arbitrarily
- 2. Repeat
- 3. Choose a_t from s_t using an exploratory policy ϕ_t

4. Take action
$$a_t$$
, observe r , s_{t+1}

5. Update
$$Q$$
 - value function such that
 $Q_{t+1}(s_t, a_t) \leftarrow Q_t(s_t, a_t) + \alpha \left[r + \gamma \max_a Q_t(s_{t+1}, a) - Q_t(s_t, a_t) \right]$
6. $t \leftarrow t + 1$

Q – Learning Algorithm (cont.)

• Learning rate (α)

- The learning rate determines to what extent the newly acquired information will override the old information.
- A factor of 0 will make the agent not learn anything, while a factor of 1 would make the agent consider only the most recent information.
- Discount factor (γ)
 - The discount factor determines the importance of future rewards.
 - A factor of 0 will make the agent "opportunistic" by only considering current rewards, while a factor approaching 1 will make it strive for a longterm high reward.

•
$$\varepsilon$$
-greedy policy
At time t
 $\phi_t \begin{cases} \text{with probability } \varepsilon_t(s) = \frac{c}{n_t(s)} \text{ select action } a \in A \text{ with prob } \frac{1}{|A|} \\ \text{with probability } 1 - \varepsilon_t(s) \text{ select an action } in \underset{a \in A}{\operatorname{argmax}} Q_t(s_t, a) \end{cases}$

 $\approx n_t(s)$ is number of visits to state *s* in time step *t*, 0 < c < 1

Note if

17

$$\lim_{t\to\infty}n_t(s)=\infty,\lim_{t\to\infty}\varepsilon_t(s)=0$$

So that ϕ_t becomes more greedy selection rule with respect to Q_t at t.

Boltzmann Exploration – Exploitation rule

$$\phi_t^a(s) = \frac{e^{T_t (s)Q_t (s,a)}}{\sum_{b \in A} e^{T_t (s)Q_t (s,b)}}$$

Where T_t (s) is called **temperature** associated with s

Note if more T_t (s) lower, $\phi_t^a(s)$ become uniform selection if more T_t (s) higher, $\phi_t^a(s)$ become greedy selection with respect to a

Q – Learning Example

A is start and our goal is end in B

- Orange location reward = -8
- White location reward = 0
- Blue location reward = 8

States

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20

Actions

North (\uparrow), South(\downarrow), East(\rightarrow), West(\leftarrow)

• The Q(s, a) function

states

1. Initialize $Q_0(s, a)$ arbitrarily

- 2. Repeat
- 3. Choose a_t from s_t using an exploratory policy ϕ_t

4. Take action
$$a_t$$
, observe r , s_{t+1}

5. Update
$$Q$$
 - value function such that
 $Q_{t+1}(s_t, a_t) \leftarrow Q_t(s_t, a_t) + \alpha \left[r + \gamma \max_a Q_t(s_{t+1}, a_t) - Q_t(s_t, a_t) \right]$
6. $t \leftarrow t + 1$

• The Q(s, a) function

states

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	↑	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	↓	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
actions	~	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	\rightarrow	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- 1. Initialize $Q_0(s, a)$ arbitrarily
- 2. Repeat
- 3. Choose a_t from s_t using an exploratory policy ϕ_t
- 4. Take action a_t , observe r, s_{t+1}

5. Update
$$Q$$
 - value function such that
 $Q_{t+1}(s_t, a_t) \leftarrow Q_t(s_t, a_t) + \alpha \left[r + \gamma \max_a Q_t(s_{t+1}, a_t) - Q_t(s_t, a_t) \right]$
6. $t \leftarrow t + 1$

An episode

- 1. Initialize $Q_0(s, a)$ arbitrarily
- 2. Repeat
- 3. Choose a_t from s_t using an exploratory policy ϕ_t
- 4. Take action a_t , observe r, s_{t+1}
- 5. Update Q value function such that $Q_{t+1}(s_t, a_t) \leftarrow Q_t(s_t, a_t) + \alpha \left[r + \gamma \max_a Q_t(s_{t+1}, a_t) - Q_t(s_t, a_t) \right]$
- $6. t \leftarrow t+1$

• We assume that
$$\alpha = 1, \gamma = 0.5$$

$Q(s_{12}, \rightarrow) \leftarrow 0 + 1 \times [0 + 0.5 \times 0 - 0]$

• We assume that
$$\alpha = 1, \gamma = 0.5$$

$Q(s_{13},\uparrow) \leftarrow 0 + 1 \times [0 + 0.5 \times 0 - 0]$

• We assume that
$$\alpha = 1, \gamma = 0.5$$

$Q(s_8, \leftarrow) \leftarrow 0 + 1 \times [0 + 0.5 \times 0 - 0]$

• We assume that
$$\alpha = 1, \gamma = 0.5$$

$Q(s_7, \uparrow) \leftarrow 0 + 1 \times [-8 + 0.5 \times 0 - 0]$

• The *Q* table after the first episode

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0	0	0	0	0	0	-8	0	0	0	0	0	0	0	0	0	0	0	0	0
↓	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
←	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\rightarrow	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

states

Sogang University Internet Communication Control Lab.

actions

A second episode

• We assume that
$$\alpha = 1, \gamma = 0.5$$

$$Q(s_{12},\uparrow) \leftarrow 0 + 1 \times [0 + 0.5 \times \max\{-8, 0, 0, 0\} - 0]$$

• We assume that
$$\alpha = 1, \gamma = 0.5$$

$Q(s_7, \rightarrow) \leftarrow 0 + 1 \times [0 + 0.5 \times 0 - 0]$

• We assume that
$$\alpha = 1, \gamma = 0.5$$

$Q(s_8, \rightarrow) \leftarrow 0 + 1 \times [0 + 0.5 \times 0 - 0]$

• We assume that
$$\alpha = 1, \gamma = 0.5$$

$Q(s_9, \rightarrow) \leftarrow 0 + 1 \times [8 + 0.5 \times 0 - 0]$

• The *Q* table after the second episode (blue – updated in first episode)

		_	_		_											_				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0	0	0	0	0	0	-8	0	0	0	0	0	0	0	0	0	0	0	0	0
↓	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
←	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\rightarrow	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	0	0	0	0	0

states

Sogang University Internet Communication Control Lab.

actions

• The *Q* table after a few episode

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0	0	0	0	0	0	-8	-8	0	0	0	1	2	4	0	0	0	0	0	0
\downarrow	0	0	0	0	0	0	0.5	1	0	0	0	-8	-8	-8	0	0	0	0	0	0
~	0	0	0	0	0	0	-8	1	0	0	0	-8	0.5	1	0	0	0	0	0	0
\rightarrow	0	0	0	0	0	0	2	4	8	0	0	1	2	-8	0	0	0	0	0	0

states

Sogang University Internet Communication Control Lab.

actions

One of the optimal policies

-8 -8 0.5 -8 -8 -8 Ţ 0.5 -8 -8 \leftarrow -8 \rightarrow

states

actions

An optimal policy graphically

• So we can find the this optimal way to go B

- Q learning can require many thousands of training iterations to converge in even modest-sized problems.
- Very often, the memory resourced required by this method become too large.

- **Case1** : Deterministic MDP
- Condition for Convergence
 - The immediate reward values are bounded. |r(s, a)| < c for all *s*, *a*
 - The agent selects actions in such a fashion that it visits every possible stateaction pair infinitely often.

Theorem 1

• $Q_n(s, a)$ converges to $Q^*(s, a)$ as $n \to \infty$, for all s, a.

Proof.

$$\begin{aligned} \Delta_n &\equiv \max_{s,a} |Q_n(s,a) - Q^*(s,a)| \\ |Q_{n+1}(s,a) - Q^*(s,a)| &= \left| \left(r + \gamma \max_{a'} Q_n(s',a') \right) - \left(r + \gamma \max_{a'} \hat{Q}(s',a') \right) \right| \\ &= \gamma \left| \max_{a'} Q_n(s',a') - \max_{a'} \hat{Q}(s',a') \right| \\ &\leq \gamma \max_{a'} |Q_n(s',a') - \hat{Q}(s',a')| \\ &\leq \gamma \max_{a''} |Q_n(s'',a') - \hat{Q}(s'',a')| \\ &\quad |Q_{n+1}(s,a) - Q^*(s,a)| \leq \gamma \Delta_n \\ &\quad |Q_{n+1}(s,a) - Q^*(s,a)| \leq \gamma^n \Delta_0 \end{aligned}$$

- **Case2** : Nondeterministic MDP
- Condition for Convergence
 - Learning rate condition

$$\sum_{t=0}^{\infty} \alpha_t (s, a) = 0$$
$$\sum_{t=0}^{\infty} \alpha_t^2 (s, a) < \infty$$

 $\overline{t=0}$

For all $(s, a) \in S \times A$

Theorem 2

• $Q_n(s, a)$ converges to $Q^*(s, a)$ as $n \to \infty$, for all s, a.

Proof.

Omit. (Show in Appendix)

- Reinforcement learning addresses the problem of learning control strategies for autonomous agents.
- The reinforcement learning algorithms fit a problem setting known as a Markov decision process (MDP).
- Q learning is one form of reinforcement learning in which the agent learns an evaluation function over states and actions.
- Q learning can be proven to converge to the correct Q function under certain assumptions.
- Reinforcement learning is closely related to dynamic programming approaches to Markov decision processes.

